Constrained bundle methods with inexact minimization applied to the energy regulation provision problem
نویسندگان
چکیده
We consider a class of large scale robust optimization problems. While the robust optimization literature often relies on structural assumptions to reformulate the problem in a tractable form using duality, this method is not always applicable and can result in problems which are very large. We propose an alternative way of solving such problems by applying a constrained bundle method. The originality of the method lies in the fact that the minimization steps in the bundle method are solved approximately using the alternating direction method of multipliers. Numerical results from a power grid regulation problem are presented and support the relevance of the approach.
منابع مشابه
Bundle Methods for Convex Minimization with Partially Inexact Oracles
Recently the proximal bundle method for minimizing a convex function has been extended to an inexact oracle that delivers function and subgradient values of unknown accuracy. We adapt this method to a partially inexact oracle that becomes exact only when an objective target level for a descent step is met. In Lagrangian relaxation, such oracles may save work by evaluating the dual function appr...
متن کاملAssessing the reliability of general-purpose Inexact Restoration methods
Inexact Restoration methods have been proved to be effective to solve constrained optimization problems in which some structure of the feasible set induces a natural way of recovering feasibility from arbitrary infeasible points. Sometimes natural ways of dealing with minimization over tangent approximations of the feasible set are also employed. A recent paper [N. Banihashemi and C. Y. Kaya, I...
متن کاملConstrained Bundle Methods for Upper Inexact Oracles with Application to Joint Chance Constrained Energy Problems
Joint chance constrained problems give rise to many algorithmic challenges. Even in the convex case, i.e., when an appropriate transformation of the probabilistic constraint is a convex function, its cutting-plane linearization is just an approximation, produced by an oracle providing subgradient and function values that can only be evaluated inexactly. As a result, the cutting-plane model may ...
متن کاملAn Energy-efficient Mathematical Model for the Resource-constrained Project Scheduling Problem: An Evolutionary Algorithm
In this paper, we propose an energy-efficient mathematical model for the resource-constrained project scheduling problem to optimize makespan and consumption of energy, simultaneously. In the proposed model, resources are speed-scaling machines. The problem is NP-hard in the strong sense. Therefore, a multi-objective fruit fly optimization algorithm (MOFOA) is developed. The MOFOA uses the VIKO...
متن کاملInexact accelerated augmented Lagrangian methods
The augmented Lagrangian method is a popular method for solving linearly constrained convex minimization problem and has been used many applications. In recently, the accelerated version of augmented Lagrangian method was developed. The augmented Lagrangian method has the subproblem and dose not have the closed form solution in general. In this talk, we propose the inexact version of accelerate...
متن کامل